
[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [109]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
TIME-DEPENDENT A* ROUTE PLANNING SYSTEM--AN ONLINE APPROACH FOR

TAIWAN FREEWAY SYSTEM
Tang-Hsien Chang*, Yuan-Hsiang Yeh, Bor-Chia Hsieh, Jen-Sung Tseng

* Department of Civil Engineering, National Taiwan University, Taiwan

ABSTRACT
Traditional route guidance programs often rely on spatial distance as the decision variable for their route

calculations and they do not consider the actual traffic conditions. This paper used the real-time travel time of

vehicles passing through road segments as the cost in route selection, to develop a time-dependent A* Algorithm for

routing. Real-time data from a travel-time database was used as the data source for journey calculation. The travel-

time database incorporated from Vehicle Detectors (VD) and Electronic Toll Collection (ETC) systems. Aside from

the forward-search calculation method, backward-search capability was also added to cater for the needs of different

users. The user would enter the starting point, destination and the expected departure or arrival time. The system

would then combine the road segment travel data from the travel-time database for calculation, recommend the best

route and provide the total time for the journey. Finally this research showed that the A* Algorithm could effectively

and rapidly narrow the direction of search and produce a satisfactory recommended route.

KEYWORDS: Time-dependent shortest route, Dijkstra’s Algorithm, A* Algorithm, Route guidance system

 INTRODUCTION
The rapid development of transportation systems today has given us a multitude of options to reach our destinations.

Choosing from the many alternatives available becomes an additional dilemma. There are many route guidance

programs on the market. Most programs based their decisions on the shortest spatial distances whether they are

intended for pre-trip or in-transit route planning. In reality the best routes recommended by these programs are often

found to be congested. Much time is wasted unnecessarily waiting in congestion, resulting in grief and aggravation

before the user finally reaches their destination.

When traveling long distances, people are more sensitive to the perception of time rather than distance. To the

majority of users, the length of time spent on a journey is more important than the distance traveled. Therefore we

believe it is necessary to have a route decision system that uses the temporal cost of traveling as its design basis.

When compared with spatial cost which is fixed, temporal cost varies with time and is more difficult to predict. As

the journey time increases, the travel time forecast for individual segments can cumulate to large deviations in total

journey time. This considerably affects the accuracy of the route decisions. Therefore, it is necessary to have a

reliable travel-time database that can provide accurate real-time data on travel segments in order to support a level of

accuracy and consistency when making route decisions.

Journey planning affects many different people. There are the workers, students and commuters who rely on, or need

to connect to other public transportations such as planes, trains and high-speed rail. Travelers are often under time

pressure or must follow a rigid transportation time table. If the journey planning begins with the time of departure,

the user would need to trial several different departure times to find the most appropriate time to leave. If one arrives

early at one location, there is no efficient mean to utilize the additional waiting time for the next segment of the

journey. Not to mention if one arrives late, it could result in financial losses at the place of work or due to missing

subsequent connections to their destination. If the user wants to find a route based on an expected arrival time, it can

be done by using the backward-search calculation method. This method provides the user with the latest time to

depart. This allows drivers to effectively: use the time before the journey, reduce the traveling time and minimize the

waiting time after arrival.

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [110]

Dijkstra’s Algorithm is the main theoretical method for finding the shortest path between two nodes [1][2]. The

algorithm is applicable on network segments where costs are non-negatively weighted. Although Dijkstra's

Algorithm is capable of finding the shortest route without having to traverse every node, the algorithm could also

waste a lot of time searching nodes that are clearly not suitable for online APP on modern smart phones or on-board

electronic devices. A* Algorithm can effectively limit the area of exploration by applying the search direction in

finding a path towards the destination point. This paper built the most optimal route decision system using the A*

Algorithm that was suitable to be used on Taiwan's national highways. In additional, it aims to provide drivers with

appropriate service software to plan their journeys.

DIJKSTRA’S ALGORITHM
At present time most problems that involve finding the shortest distance between two nodes employ Dijkstra's

Algorithm as the main theoretical method [1][2]. The computing time complexity is 𝑂(𝑛2). It requires the cost of

each network segment to be non-negative. The calculation process for Dijkstra's Algorithm is as shown in Figure 1.

Although Dijkstra's Algorithm can obtain the most optimal solution, when it is applied on a network that is huge and

complex, the algorithm often wastes a lot of its time searching in unnecessary directions. For example, if the

destination point is located south-east of the starting point, Dijkstra's Algorithm would begin searching from the

starting point in all directions for all possible paths, including the north-west and other directions. However the

advantage of Dijkstra's Algorithm is that it does not need to traverse all nodes in order to find the shortest path. If

the shortest path to the destination point has been found, other paths that also reach the destination point must have a

travel time longer than the shortest path. Any sub-path of this shortest path must also be the shortest path.

A* ALGORITHM
A* Algorithm [3][4] is the mainstream technology for solving the shortest path problem in gaming software due to

its heuristic design potential. It also eliminates many of the paths that are obviously unsuitable by using a set of

special heuristic estimate formulas. The aim of the algorithm is to narrow the direction for searching for nodes by

reducing the number of unnecessary nodes to be explored, thereby reducing the overall search time. The search

depth of A* Algorithm does not output the most optimal solution produced from exploring the entire map by default.

Instead the algorithm selects the appropriate cost function design to yield the second-best solution which is more

efficient. Theoretically A* Algorithm is an extension and an improvement of Dijkstra's Algorithm.

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [111]

Set the origin O with a permanent label, Set i=O. Move it from Q to S.

Set the permanent node in the connecting upper-links of the origin O be

P(O) = NULL, and set its route cost L(O) = 0. The route cost w.r.t. other

nodes j be L(j) = ∞. Define P(i) be the upper-link nodes of node i, G(i) be

the nodes connecting to node i.

Update the cost of the nodes in Γ(i), which with temporary label

(not with permanent label): L(j) = min[L(j), L(i) + w(i, j)]

w(i, j) denotes the cost of the link i to j

Take node j in Q which has

minimum L(j)

Set node j be with permanent label, remove it

from Q to S and set i = j

Node i =

Destination D ?

L(i) + w(i, j) < L(j)

P(j) = i NO

YES

NO

YES

Initializing state: Put all nodes in the given

case into two sets: said S and Q, S contains

‘visited’nodes and Q contains ‘non-

visited’ nodes.

Output the shortest route with

minimum L(D)

Figure 1. Dijkstra's Algorithm

 A* Algorithm has a processing with evaluation as Formula (1):

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

 𝑔(𝑛)：Distance from staring point to the current node n

ℎ(𝑛)：Predicted distance from current node n to the destination point

𝑓(𝑛)：Evaluation score of the current node n

Where h(n) can have the following scenarios:

1. ℎ(𝑛) = 0, which is equivalent to Dijkstra's Algorithm. The most optimal solution will be the target of the search.

2. ℎ(𝑛) < Dcd, A* Algorithm will search for the most optimal solution. Where Dcd denotes the distance from

current node to the destination. The smaller the h(n) is, the deeper the depth of search will be.

3. ℎ(𝑛) = Dcd, A* Algorithm will search for the second-best solution and can quickly produce the result.

4. ℎ(𝑛) > Dcd, no guarentee the shortest path can be found.

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [112]

This paper aimed to build a time-dependent route calculation system that meets the users' needs. In doing so, this

study referenced the A* Algorithm formula above and designed several time-dependent traffic parameters. The

conventional use of spatial distance as the cost of travel segments was removed from the algorithm calculation.

Instead, travel time through segments was implemented as the cost function. This allowed the calculation to reflect

the changes in travel durations at different times of day.

Following the logic of Dijkstra's Algorithm, A* Algorithm would begin at the starting point. It would continuously

add to the path nodes that were assigned temporary labels and had the lowest total travel cost. This process would

continue until the destination has been reached. As mentioned above, searches in Dijkstra's Algorithm have no

directionality, and thus the algorithm is less efficient in terms of speed. Error! Reference source not found.When

using A* Algorithm, aside from considering the travel cost on each road segment, the straight-line distance between

each downstream node and the destination point is also used as a reference. This is done by taking the straight line

distance between the starting node and the destination point as the diameter, and the midpoint of the line as the

center of a circle. Priority is given to searching nodes that are within this circle. The further away a node is from the

center of the circle, the lower it would be in search priority. When searching the downstream nodes, the ability to

ensure search priority towards the direction of the destination point would allow finding the shortest reasonable

route within a shorter time frame, while at the same time not completely neglecting nodes in other directions.

Related parameters are as follows:

1. 𝑔′(𝑛): Replacing the original travel distance 𝑔(𝑛) by taking into consideration of the cumulative travel time of

the downstream nodes.

2. ℎ′(𝑛): The transportation network utilized the Euclidean distance in A* Algorithm [3][4] as a type of

evaluation, the heuristic formula for calculating the distance is as follows:

ℎ′(𝑛) = ℎ(𝑛) / 𝑉̅ (2)

where, 𝑉̅ = the upper speed limit; h(n) =𝐺 × √[(𝑛𝑜𝑑𝑒. 𝑥 − 𝑔𝑜𝑎𝑙. 𝑥)2 + (𝑛𝑜𝑑𝑒. 𝑦 − 𝑔𝑜𝑎𝑙. 𝑦)2]

G = cost of downstream node (distance);

node.x = x coordinate value of the downstream node; node.y = y coordinate value of the downstream node; goal.x =

x coordinate value of the destination point; goal.y = y coordinate value of the destination point.

Since the derived heuristic distance h(n) is still tied to spatial cost term, formula (2) is transformed to heuristic

temporal cost term by dividing h(n) by the upper speed limit of road segments.

CONSTRUCTION OF THE SYSTEM
The basic structure of the system is divided into three parts: user interface, route calculation module and travel-time

database. The user can begin by entering the "starting point", "destination point" and "expected departure/arrival

time". The user interface takes the information entered by the user and converts it into standard units (such as

starting and destination points are converted into standard mileage, departure/arrival time are converted to standard

times. The route calculation module will begin the time-dependent calculation for the shortest route after receiving

the query. Since the travel duration on road segments varies over time, the system will continuously query the

travel-time database for the road segments' latest travel time for the cost of the route during calculation. On every

downstream node added, the system will record the route and the cumulative journey time until the destination has

been reached. The system then returns the recorded route and total journey time as recommendation to the user. The

system flow is as shown in Figure 2.

There are two parts to the route calculation module: the forward-search calculation procedure and the backward-

search calculation procedure. The input data for the forward-search method are: starting point, destination point and

expected departure time. The output data are: recommended travel route, arrival time and total journey time. The

input data for the backward-search method are: starting point, destination point and expected arrival time. The

output data are: recommended travel route, departure time, and total journey time. The following section provides

the details on the forward-search and backward-search route calculation procedures.

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [113]

Start

Input OD and expected

departure time or arrival

time
Run A*, the time-

dependent shortest

routing searching

program

Data Base of

Travel time in

terms of section,

time slot/interval

Record travel

path and total

travel time

Is Destination

searched?

Show path

suggested and

the travel time

Terminate, waiting

for next inquiry

YES

NO

Travel Time Data Base
Module

A* Algorithm
Computing Module

User Interface

Figure 2. Flow chart of time-dependent route searching system

1. Forward-search route calculation procedure

The forward-search route calculation takes the following data as input: starting point, destination point, and expected

departure time. When the route calculation begins, the starting point is given the permanent label. The process would

look for all nodes connecting to the permanent label, query the segment travel time for each connecting node, and

then assign the node the temporary label. Among these nodes with temporary labels, the process would pick the one

node with the best A* score and update it with the permanent label. The above process is repeated until the

destination point has been given the permanent label which at that point the calculation would conclude. The steps of

the forward-search route calculation are as follows:

Step 1： Update the following parameters of the starting point: timeWhenPass = Departure Time; travelTime = 0;

parent = null; hasVist = true. Add the starting point into the visited-nodes set S.

Step 2： Focusing on node i which is the newest member of set S, search for node j, a connecting node to node i with

hasVist = false. Using node i as the segment's starting point, node j as the destination point and node i's

timeWhenPass as the query time, obtain the latest travel duration for this segment ij from the travel-time

database. If the sum of the segment's travel time and i's timeWhenPass is smaller than j's timeWhenPass, then

treat node i as the upstream node of node j and update the following j's parameters: (1) timeWhenPass = i's

timeWhenPass + ij's segment travel time; (2) travelTime = ij's segment travel time; (3) parent = i.

Step 3： Add node j to the shortlisted-nodes set Q.

Step 4： From set Q, select node k which is the node with the best A* score. Remove node k from set Q and add it to

set S.

Step 5： Verify to see if the destination point has already been added to set S. If destination point has already been

added to set S, that means the algorithm has found the destination. The calculation process would conclude at

this point. If destination point has not been added to set S yet, return to Step 2 and resume calculation.

2. Backward-search route calculation procedure

The backward-search route calculation procedure is similar to the forward-search procedure. The backward-search

procedure takes the starting point, destination point and expected arrival time as input data. Prior to the calculation,

the method simply swaps the starting and destination points entered by the user and proceeds with the calculation

process of the forward-search procedure. However, there is one difference from the forward-search procedure when

querying the travel costs for the road segments.

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [114]

Given a simple road segment with the starting point O and destination point D, the method of query to the travel-time

database is to enter the starting point O, destination point D and the entry time into the segment at O, 𝑡𝑂. The

database would return the travel duration at time 𝑡𝑂 for traveling from O to D, 𝐸𝑂𝐷(𝑡). When the backward-search

method performs its calculation, it swaps the starting and destination points, and thus queries the time duration

traveling from D to O passing through D at time 𝑡𝐷. However the direction of the user's journey is from O to D. Even

though it may be over the same road segment, the forward and reverse travel times are not necessarily the same.

Therefore the travel time duration for the segment for the direction from O to D is required as the segment's travel

cost.

In order to get the departure time at point O for the given arrival time at point D, let's assume that over the brief

instance of a database query the travel duration would not vary significantly. Using O as the starting point and 𝑡𝐷 as

the departure time, the database returns the segment's travel duration, 𝐸𝑂𝐷(𝑡𝐷). If the segment's travel duration has

not varied over this brief instance of the query, the actual departure time would be 𝑡𝑂
′ = 𝑡𝐷 − 𝐸𝑂𝐷(𝑡𝐷). A test is

then needed to verify if the departure time meets the user's requirement. A query is sent to the travel-time database

with the starting point O and departure time 𝑡𝑂
′ . The returned arrival time at point D would be 𝐸𝑂𝐷(𝑡𝑂

′). The

calculation ∆𝑡 = 𝐸𝑂𝐷(𝑡𝑂
′) − 𝑡𝐷 would yield the difference between the actual arrival time and the expected arrival

time. ∆𝑡 > 0 represents the actual arrival time being later than the expected arrival time, whereas ∆𝑡 < 0 represents

the actual arrival time being earlier than the expected arrival time. If there is a large deviation between the actual

arrival time and the expected arrival time, the departure time is adjusted by 𝑡𝑂
′′ = 𝑡𝑂

′ − ∆𝑡 and it is tested again. This

process is repeated until the deviation between actual and expected arrival times is small enough to be acceptable

SYSTEM IMPLEMENTATION TEST AND RESULTS

This paper used Taiwan's National Freeway No. 1 and National Freeway No. 3 as the scope of the system

implementation testing. Freeway No. 1 begins in Keelung City in the North and ends in Kaohsiung City (KAOHSN)

in the South with a distance of 372.7 kilometers. Freeway No. 3 begins at Jijin Interchange in the North and reaches

Dapeng Bay in the South with a distance of 431.5 kilometers. The routes are as shown in Figure 3. Figure 3The data

sources for the travel-time database come from the Vehicle Detectors (VD) and Electronic Toll Collection (ETC)

systems that are installed on the national highways. The VD system provides vehicle speed data and the ETC system

provides the tolling information, particularly about travel time.

Based on the two calculation methods discussed above - the forward-search and the backward-search calculation

procedures, the results from both methods were found to be consistent with each other. For the backward-search

procedure, the number of searches was found to be higher and the calculation time longer than the forward-search

procedure. Although there was only one best route, the search directions were not the same between the forward-

search and the backward-search methods. The forward-search calculation began from the starting point whereas the

backward-search calculation began from the destination point. The recommended routes were the same even though

the number of nodes found and node details were not necessarily matching between the methods.

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [115]

Figure 3. National Freeway No.1 and 3

To validate that the backward-search calculation could find the same route as recommended by the forward-search

calculation, two test cases were designed, each with a starting and destination points combination: (1) a journey

passing through one system interchange to another freeway; (2) a journey passing through two system interchanges.

The expected arrival time was first entered through the backward-search route calculation method to obtain a

departure time. This departure time was then entered into the forward-search route calculation to confirm the output

of the backward-search method.

Test Case 1:

 Starting from: Dajia Toll Station at Freeway No. 3

 Arriving at: Dounan Toll Station at Freeway No. 1

 Expected arrival time: 20:00

Results are as shown in Table 1.

Test Case 2:

 Starting from: Longtan Toll Station at Freeway No. 3

 Arriving at: Yunlin Toll Station at Freeway No. 1

 Expected arrival time: 20:00

Results are as shown in Table 2.

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [116]

Table 1(a). Test case 1-Dijkstra’s Algorithm

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [117]

Table 1(b). Test case 1-A* Algorithm

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [118]

Table 2(a). Test case 2-Dijkstra’s Algorithm

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [119]

Table 2(b). Test case 2-A* Algorithm

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [120]

Examination of the outputs from forward-search and backward-search calculations demonstrated that the solutions

from both methods were consistent with each other. This was regardless of whether Dijkstra's Algorithm or A*

Algorithm was used. The backward-search method was found to have a higher number of searches and longer

calculation time than the forward-search method. Although there was only one best route, the direction of search for

the nodes were not the same between the two methods. The forward-search calculation began from the starting point

whereas the backward-search calculation began from the destination point. The recommended routes were the same

even though the number of nodes found and node details were not necessarily matching between the methods.

Furthermore, a comparison was made between the backward-search calculation using A* Algorithm and the

forward-search calculation using Dijkstra's Algorithm. Although the former calculation found a lower number of

nodes than the latter, the former still took longer to run as compared with the latter due to the fact that when

querying the travel time duration of a road segment, the forward-search method could directly use the time when

entering the segment to find the travel duration for the segment. In contrast, the backward-search method required

repeatedly testing the entry time to a segment for the travel duration in hope of finding the right entry time that

would yield the desired exit time leaving the segment. Over the same road segment, the forward-search route

calculation would require only one query to the database to obtain the travel time duration for the segment. The

backward-search calculation would instead repeat the query several times to get the appropriate travel time.

Therefore, in the situation when there is the same number of nodes found, the backward-search method would still

require longer calculation time than the forward-search method.

CONCLUSION
This system did not use the spatial distance as travel cost which is commonly adapted elsewhere. Instead, it applied

the travel time as the cost for the reason that travelers are more sensitive to the duration of travel rather than to

distance. In introducing the travel-time database, the concept of time-dependency was integrated into the route

calculation. This allowed the calculations to reflect the ever-changing traffic condition over time and provide more

accurate prediction of journey time duration and route guidance.

This paper compared Dijkstra's Algorithm and its extension A* Algorithm. It was found that A* Algorithm could

narrow the direction of search for paths, effectively reducing the search time and increasing calculation efficiency.

When the network becomes huge and complex, the advantages of A* Algorithm would become even more

significant. Although the area of search by A* Algorithm might not be as extensive as that of Dijkstra's Algorithm,

A* Algorithm was able to produce satisfactory routes within shorter time frames. A* Algorithm only needed to

search through 30% ~ 65% of nodes when compared to Dijkstra's Algorithm to find the same recommended route

when implementing the system on a sample road network.

For users who desire to arrive at the chosen destination at a specific time, the backward-search route calculation

method, which takes in the starting point, destination and expected arrival time, can meet the users’ needs. It saves

the users’ time from having to repeatedly query using different departure times.

Although the backward-search calculation method can find the same best route for travel as the forward-search

method, the backward-search method requires repeated queries with the segment's entry times to obtain an

appropriate travel duration for the segment. As a result, the backward-search method requires longer calculation

time than the forward-search method even when the same number of nodes is found.

ACKNOWLEDGEMENTS
The research team thanks to Far Eastern Electronic Toll Collection Co, Ltd. as the reaserch sponsor and gave many

support.

REFERENCES
[1] E.W. Dijkstra, “A Note on Two Problems in Connexion with Graphs.” Numerische Mathematik 1, pp. 269-

271, 1959.

[2] B.V., Cherkassky, A.V. Goldberg, and T. Radzik, “Shortest paths algorithms: Theory and Experimental

Evaluation.” Mathematical Programming 73(2), pp.129-174, 1996.

[3] G.A. Klunder and H.N. Post. “The Shortest Path Problem on Large-scale Real-road Networks.”

NETWORKS 48(4), pp.182-194, 2006.

[4] N. Sturtevant and M. Buro, “Partial Pathfinding Using Map Abstraction and Refinement.” Proceedings of

AAAI, pp. 1392-1397, 2005.

http://www.ijesrt.com/

[Chang, 4(6): June, 2015] ISSN: 2277-9655

 (I2OR), Publication Impact Factor: 3.785

 (ISRA), Journal Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [121]

AUTHOR BIBLIOGRAPHY

Tang-Hsien Chang,

He received Ph.D degree from National Taiwan University,

Taipei, Taiwan, 1986. He is currently a Professor of Civil

Engineering Department at National Taiwan University. His

major field is related to Intelligent Transportation Systems,

Automatic Vehicle Control, Connected Vehicles, Traffic

Measurement and Control, Dynamic Systems, Telematics,

Near Field Informatics, Internet of Things. He was the prime

chair of ITS Taiwan (1998-2000), executive chair of ITS Asia

Pacific (2002-2003) and BOD member of ITS world congress

for ten years long (1997-2008). He is now BOD member of

TTIA (Taiwan Telematics Industry Association) and the ITS

group chair of TIOTA (Taiwan Internet Of Things Alliance).

Email:

Yuan-Hsiang Yeh

He is now a Ph.D candidate, National Taiwan University. He

is also a professional traffic engineer since 2000.

Bor-Chia Hsieh
He got master degree from National Taiwan. He is now a

research assistant in ITS Lab, Professor Chang’s team.

Jen-Sung Tseng
He is now a Ph.D candidate, National Taiwan University. He

is also the Senior Engineer of Planning Division, Taiwan Area

National Expressway Engineering Bureau, Ministry of

Transportation and Communications, Taiwan ROC.

http://www.ijesrt.com/

